Véto-pharma Committed to apiculture

The screening of new active ingredients against *Varroa destructor*

by Rémi Padé, Bee Innovation project manager

The Véto-pharma R&D strategy

What weapons do we have today to fight varroa mites?

All the veterinary based medicines are based on 7 active ingredients (= molecules):

- Amitraz (Apitraz, Apivar)
- Oxalic acid dihydrate (ApiBioxal, Oxybee, VarroMed*, Dany Bienenwohl)
- Formic acid (MAQS, Formic Pro, VarroMed*)
- Thymol (Apiguard, Thymovar, Apilife Var)
- Tau-fluvalinate (Apistan)
- Flumethrin (Polyvar Yellow, Bayvarol)
- Coumaphos (Checkmite)

What is the Véto-pharma strategy for new solutions?

Reformulation of existing active ingredients

- To improve efficacy and reduce variation in treatment outcome
- To simplify the use and increase safety for the beekeeper
- Minimize the negative impact of temperature variations (e.g. formic acid, thymol)
- To propose a better management of the varroa infestation throughout the year (in many situations, a single treatment is not enough)

Research of new active ingredients

- Synthetic and organic
- To enable beekeepers to develop a real strategy of integrated pest management (rotation, prevention of potential resistance ...)

=> « Varroa 2.0 » project

éto-pharma

How do we do that?

A galenic and analytical development team

- Reformulation of existing actives
- Formulation of new actives
- Verification of the product stability and quality

A « bee lab »

 Safe in-vitro testing of new actives or new formulations

An experimental apiary with 250 colonies (Dadant 10 frames) and 2 beekeepers

- Sampling for in-vitro testing
- Efficacy monitoring of vet medicines
- Efficacy and tolerance monitoring (on development, brood, adult bees...) of new formulations

Reactivity

The « Varroa 2.0 » project

Objective and methods

Identify new active ingredients to fight varroa mites:

- Organic or conventional (chemical)
- Effective
- Non-toxic for bees
- Non-toxic for beekeepers
- Respecting the quality of the honey (residues)

Three measured criteria:

- Varroa mite mortality over time (up to 24 hours)
- Bee mortality over time (up to 24 hours)
- Potential behavioral changes

About 40 molecules have been screened over the past years

éto-pharma

Actions in the apiary

Varroa mites sampling in the « mite concentrators »

Sampling of 300 bees with powdered sugar



Sampling of bees for screening

Actions in the Bee lab

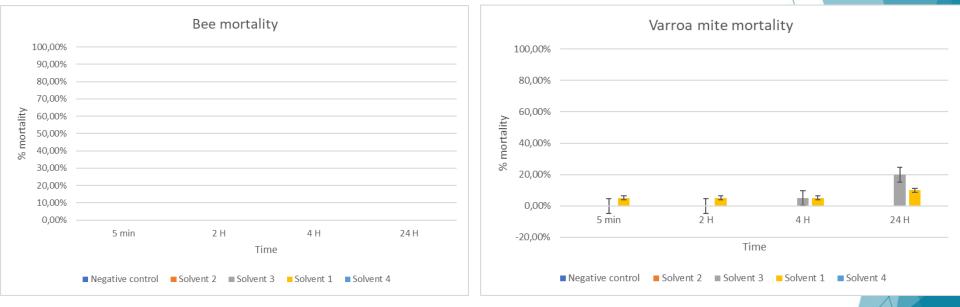
Separation of varroa mites from powdered sugar after mite sampling Collection of 10 mites per petri dish

Intoxication of bees

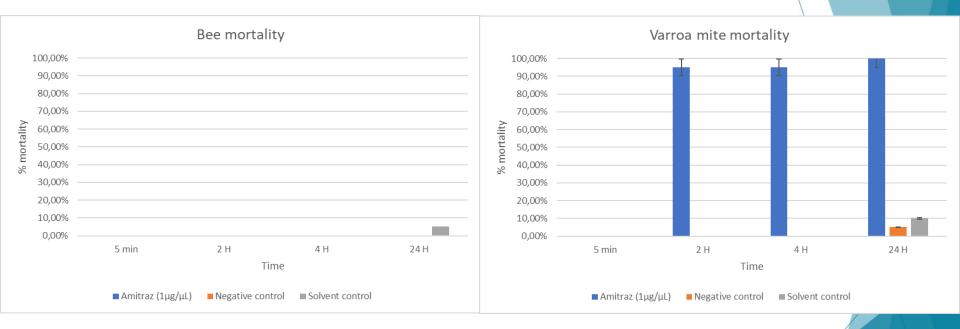
Anesthesia of bees with CO₂

Thoracic deposit of the active ingredient in solvent

Deposit of « intoxicated » bees in the boxes containing the mites


Incubator

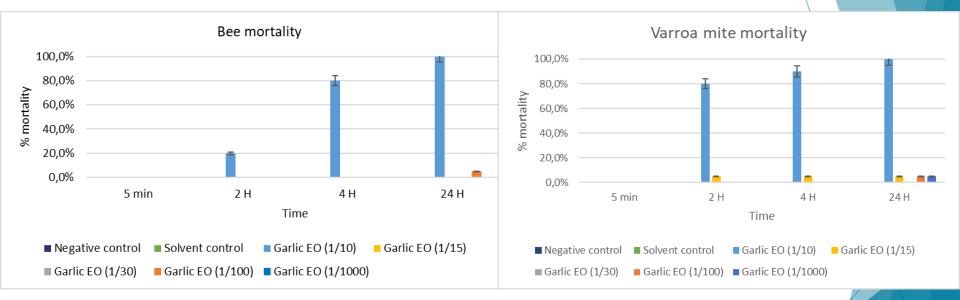
Protocol validation


Choosing the right solvent

Véto-pharma Committed to apiculture

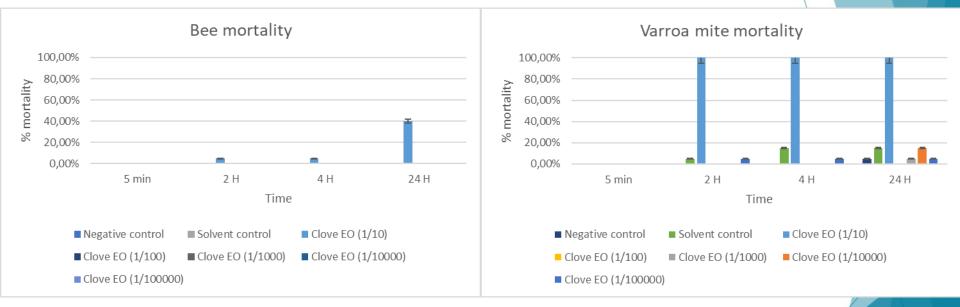
- Compatibility with the active to test
- Non-toxic for varroa mites (<10%)</p>
- Non-toxic for bees (<10%)</p>
- Possible application on the thorax of the bees
- Fast evaporation

Positive control: amitraz


Rapid efficacy of amitraz on varroa mite populations and non-toxicity for bees.

"Excluding" and "encouraging" results

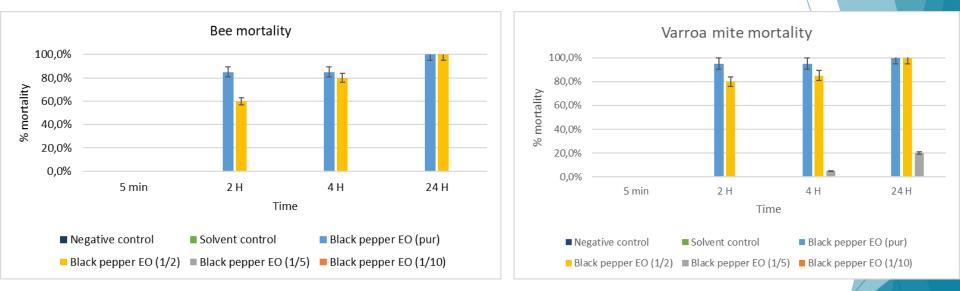
Molecules to avoid (Garlic Essential Oil)



Very effective against varroa mite but very high toxicity for bees. The effectiveness decreases quickly with dilution.

> Véto-pharma Committed to apiculture

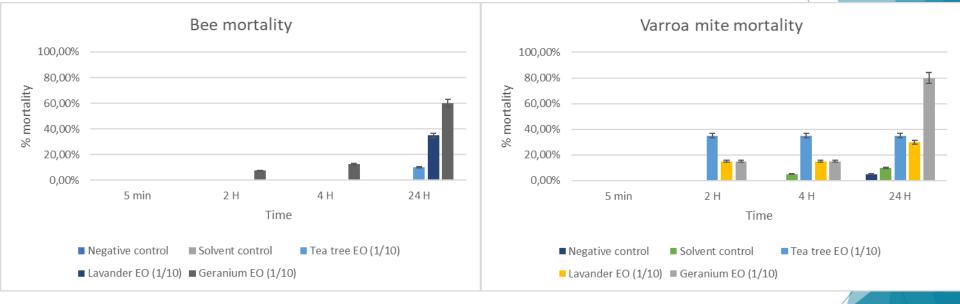
EO = Essential oil


Molecules to avoid (Clove Essential Oil)

Very effective against varroa mite but very high toxicity for bees. The effectiveness decreases quickly with dilution.

> Véto-pharma Committed to apiculture

Molecules to avoid (Black pepper Essential Oil)

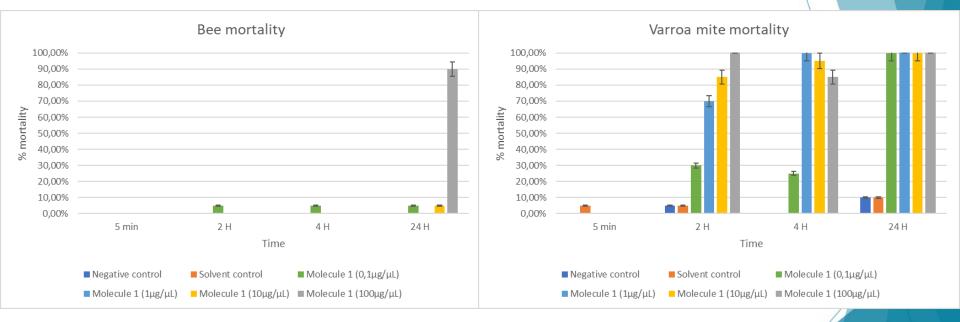


Very effective against varroa mite but very high toxicity for bees. The effectiveness decreases quickly with dilution.

Véto-pharma

EO = Essential oil

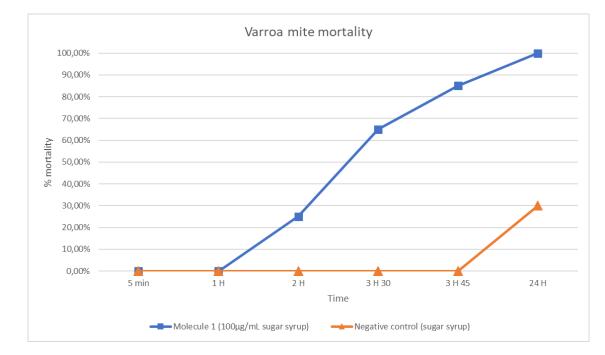
Molecules to avoid (Tea tree, Lavender and Geranium Essential Oils)


éto-pharma

Committed to apiculture

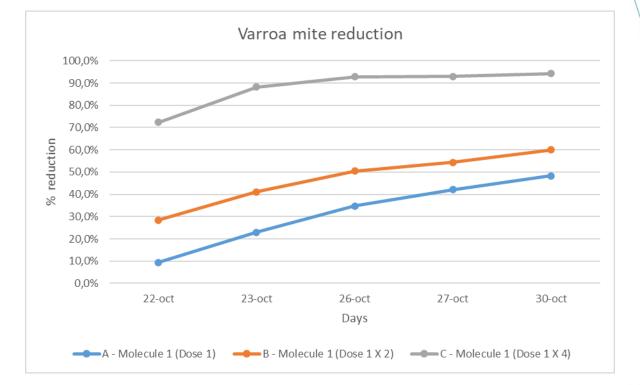
Geranium EO is very effective against varroa mite but very toxic for bees. The two others are toxic as well and less effective.

EO = Essential oil

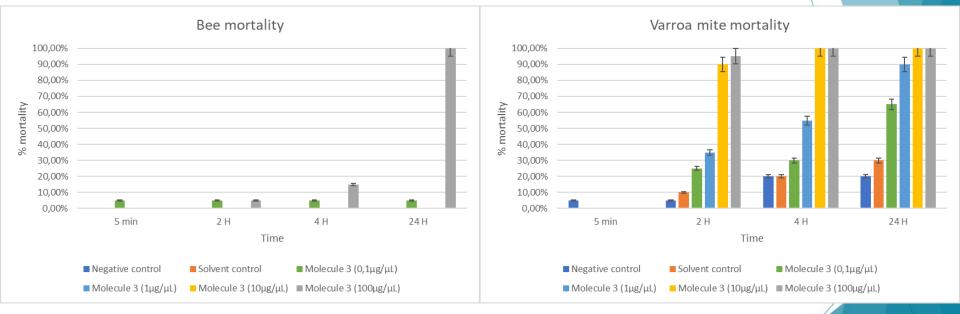

Promising molecules (molecule 1 - thoracic)

Same efficiency than amitraz (same kinetic). Very low toxicity for bees except for the higher concentration.

Véto-pharma Committed to apiculture


Promising molecules (molecule 1 - ingestion)

No difference between bee mortality in the two groups. Could the ingestion of the molecule lead to residues in the hive products or brood toxicity?


Promising molecules (molecule 1 – in hive - broodless)

94.3% varroa mite reduction after 10 days in broodless colonies. Only 3 hives per group.

Véto-pharma Committed to apiculture

Promising molecules (molecule 3 = chemically related to molecule 1)

Efficiency a little bit lower than molecule 1. Very low toxicity for bees except to the higher dose.

Véto-pharma Committed to apiculture

Still some questions...and improvements...

- The way of intoxication on bees seems to have an impact on the results (thoracic / abdominal / feeding).
- What could be the effect of mixing different active ingredients?
 - Reduction of the toxicity for bees?
 - Reduction of efficiency against varroa mites?
- Test of new in-vitro trial with different ways of intoxication.
- Increase the observation time (some active ingredients could be very effective but with a slow kinetic).
- Understand the mechanism of action from a molecular point of view.

Identification of these molecules?

Numerous sources

Partnerships with:

- Universities (France and abroad)
- Researchers (France and abroad)
- Independent and private structures (France and abroad)
- Beekeepers-researchers
- In all cases: under confidentiality agreement for protection of the inventor's data
- During congresses, conferences, mail, telephone...

Internal resources:

- Bibliographic studies
- Internal thinking

The importance of the project:

 Compare external results with an approved protocol

> Véto-pharma Committed to apiculture

Reproducibility of results

Next steps

Preclinical development

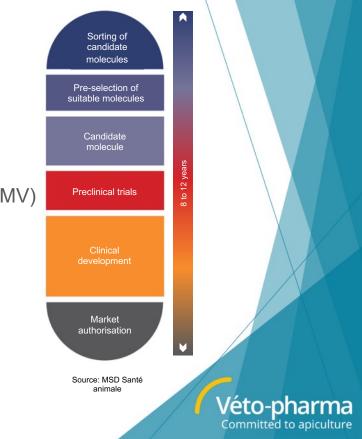
Identify the formulation of the new active

- In what form?
- With which support?
- Verification of the harmlessness for the bees
- Verification of the absence of residues
- Verification of product effectiveness
- Tolerance check
- Complete file on the molecule itself

Clinical development

Clinical trials

- Confirmation of veterinary medicine properties under normal conditions of use and in the field (total infestation, colony size, etc.).
- Provides the desired therapeutic effect
- Tests performed by an independent structure and subject to good laboratory practice (GLP) are also conducted for subsequent use of the data.



Registration (market authorisation)

Market authorisation

- Compilation of all data from preclinical and clinical trials
- Submission to the authorities:
 - National Agency for Veterinary Medicines (ANSES-ANMV) for France
 - Other national agencies
 - European Medicines Agency (EMA)
 - Centralized MAs for the European Union

Véto-pharma Committed to apiculture

Merci ! Thank you! Danke! ¡Gracias!

www.veto-pharma.com info@vetopharma.com

Rémi Padé remi.pade@vetopharma.com

VTP-35-EU-N02-10/21